Step of Proof: hd-before
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
hd-before
:
T
:Type,
L
:(
T
List). (0 < ||
L
||)
(
x
:
T
. (
x
L
)
(
(
x
= hd(
L
)))
hd(
L
) before
x
L
)
latex
by ((Auto)
CollapseTHEN (((DVar `L')
CollapseTHEN (((All Reduce)
CollapseTHEN (Auto'))
))
))
C
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
u
:
T
C1:
3.
v
:
T
List
C1:
4. 0 < (||
v
||+1)
C1:
5.
x
:
T
C1:
6. (
x
[
u
/
v
])
C1:
7.
(
x
=
u
)
C1:
u
before
x
[
u
/
v
]
C
.
Definitions
P
Q
,
s
=
t
,
hd(
l
)
,
A
,
(
x
l
)
,
a
<
b
,
type
List
,
Type
,
||
as
||
,
i
j
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
x
before
y
l
Lemmas
l
member
wf
,
not
wf
,
l
before
wf
origin